
CS166 Handout 07
Spring 2014 April 23, 2014

Assignment 4: Binomial and Fibonacci Heaps

This problem set explores binomial heaps, Fibonacci heaps, and their variants. We hope that it so-
lidifies your understanding of the mechanics and theory behind them.

Working in Pairs

We suggest working on this problem set in pairs. If you work in a pair, you should jointly submit
a single assignment, which will be graded out of 10 points. If you work individually, the problem
set will be graded out of 9 points, but we will not award extra credit if you earn more than 9
points. Note that the point totals have been scaled back relative to the first few problem sets, so
each point here is worth more than on earlier problem sets.

Due Wednesday, April 30 at 2:15PM at the start of lecture.

Problem One: Implementing Lazy Binomial Heaps (3 Points)

In this problem, you'll implement a lazy binomial heap to familiarize yourself with its operation
and to explore a few implementation details we glossed over in lecture.

When implementing the lazy binomial heap, we'd
like you to represent binomial trees using the left-
child/right-sibling (LCRS) representation, which
encodes a multiway tree as a binary tree. In
LCRS, each node has two pointers: a left pointer
storing a pointer to its first child, and a right
pointer storing a pointer to its next sibling. If the
node has no children, the left pointer is null, and if
the node is the last child of its parent, then its
right pointer is null. A sample multiway tree and
its LCRS representation is shown to the left.

We've provided Java starter files for this programming question at /usr/class/cs166/assign-
ments/ps4/. Your job is to implement the LazyBinomialHeap type defined in LazyBinomial-
Heap.java such that each binomial tree is encoded as a binary tree using the LCRS representa-
tion. The root nodes of the trees in the heap should be stored in a doubly-linked list, melds should
be done by concatenating the root lists together, and trees should only be coalesced during an ex-
tract-min. All operations should run in amortized time O(1), except for extract-min, which
should run in amortized time O(log n).

Lazy binomial heaps require the roots of the trees to be stored in a doubly-linked list. Unfortu-
nately, the Java LinkedList type is insufficient here, as you cannot concatenate LinkedLists in
time O(1). We strongly recommend writing your own custom linked list type to use while imple-
menting LazyBinomialHeap. From our own experience, factoring this code out of LazyBinomi-
alHeap will save you a lot of time debugging!

B

E

C

F G

D

A

A

B

C

D

E

F

G

Problem Two: Palos Altos (1 Point)

Prove that for any positive integers k and m, there is a series of operations that, starting with an empty
Fibonacci heap, causes the heap to have a tree of order k containing at least m nodes. This shows that
there is no upper bound on the number of nodes in a tree in a Fibonacci heap.

Problem Three: Meldable Heaps with Addition (5 Points)

Meldable priority queues support the following operations:

• new-pq(), which constructs a new, empty priority queue;
• pq.insert(v, k), which inserts element v with key k;
• pq.find-min(), which returns an element with the least key;
• pq.extract-min(), which removes and returns an element with the least key;
• meld(pq , ₁ pq₂), which destructively modifies priority queues pq and ₁ pq ₂ and produces a single

priority queue containing all the elements and keys from pq and ₁ pq . ₂

Some graph algorithms, such as the Chu-Liu-Edmonds algorithm for finding minimum spanning trees
in directed graphs, also require the following operation:

• pq.add-to-all(Δk), which adds Δk to the keys of each element in the priority queue.

Using lazy binomial heaps as a starting point, design a data structure that supports all new-pq, insert,
find-min, meld, and add-to-all in amortized time O(1) and extract-min in amortized time O(log n).
Some hints:

1. You may find it useful, as a warmup, to get all these operations to run in time O(log n) by start-
ing with an eager binomial heap and making appropriate modifications. You may end up using
some of the techniques you develop in your overall structure.

2. Try to make all operations have worst-case runtime O(1) except for extract-min. Your imple-
mentation of extract-min will probably do a lot of work, but if you've set it up correctly the
amortized cost will only be O(log n). This means, in particular, that you will only propagate the
Δk's through the data structure in extract-min.

3. If you only propagate Δk's during an extract-min as we suggest, you'll run into some challenges
trying to meld two lazy binomial heaps with different Δk's. To address this, we recommend that
you change how meld is done to be even lazier than the lazy approach we discussed in class.
You might find it useful to construct a separate data structure tracking the melds that have been
done and then only actually combining together the heaps during an extract-min.

4. To get the proper amortized time bound for extract-min, you will probably need to define a po-
tential function both in terms of the structure of the lazy binomial heaps and in terms of the aux-
iliary data structure hinted at by the previous point.

Problem Four: Course Feedback (1 Point)

We want this course to be as good as it can be and would really appreciate your feedback on how we're
doing. For a free point, please take a few minutes to answer the course feedback questions available at
https://docs.google.com/forms/d/1pn_tXQYwrcGe6DfF1dozp1x0YMoR0K6P6cj5dPRcN1I/viewform.
If you are submitting in a group, please have each group member fill this out individually.

https://docs.google.com/forms/d/1pn_tXQYwrcGe6DfF1dozp1x0YMoR0K6P6cj5dPRcN1I/viewform

