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Spring 2014 April 23, 2014

Assignment 4: Binomial and Fibonacci Heaps

This problem set explores binomial heaps, Fibonacci heaps, and their variants. We hope that it so-
lidifies your understanding of the mechanics and theory behind them.

 

Working in Pairs

We suggest working on this problem set in pairs. If you work in a pair, you should jointly submit 
a single assignment, which will be graded out of 10 points. If you work individually, the problem 
set will be graded out of  9 points, but we will not award extra credit if you earn more than  9 
points. Note that the point totals have been scaled back relative to the first few problem sets, so 
each point here is worth more than on earlier problem sets.

Due Wednesday, April 30 at 2:15PM at the start of lecture.

Problem One: Implementing Lazy Binomial Heaps (3 Points)

In this problem, you'll implement a lazy binomial heap to familiarize yourself with its operation 
and to explore a few implementation details we glossed over in lecture.

When implementing the lazy binomial heap, we'd 
like you to represent binomial trees using the left-
child/right-sibling (LCRS)  representation,  which 
encodes  a  multiway  tree  as  a  binary  tree.  In 
LCRS, each node has two pointers: a  left pointer 
storing  a  pointer  to  its  first  child,  and  a  right 
pointer storing a pointer to its next sibling. If the 
node has no children, the left pointer is null, and if 
the  node is  the  last  child  of  its  parent,  then  its 
right pointer is null.  A sample multiway tree and 
its LCRS representation is shown to the left.

We've provided Java starter files for this programming question at /usr/class/cs166/assign-
ments/ps4/.  Your job is to implement the  LazyBinomialHeap type defined in  LazyBinomial-
Heap.java such that each binomial tree is encoded as a binary tree using the LCRS representa-
tion. The root nodes of the trees in the heap should be stored in a doubly-linked list, melds should 
be done by concatenating the root lists together, and trees should only be coalesced during an ex-
tract-min.  All  operations  should  run  in  amortized  time  O(1),  except  for  extract-min,  which 
should run in amortized time O(log n).

Lazy binomial heaps require the roots of the trees to be stored in a doubly-linked list. Unfortu-
nately, the Java LinkedList type is insufficient here, as you cannot concatenate LinkedLists in 
time O(1). We strongly recommend writing your own custom linked list type to use while imple-
menting LazyBinomialHeap. From our own experience, factoring this code out of LazyBinomi-
alHeap will save you a lot of time debugging!
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Problem Two: Palos Altos (1 Point)

Prove that for any positive integers k and m, there is a series of operations that, starting with an empty 
Fibonacci heap, causes the heap to have a tree of order k containing at least m nodes. This shows that 
there is no upper bound on the number of nodes in a tree in a Fibonacci heap.

Problem Three: Meldable Heaps with Addition (5 Points)

Meldable priority queues support the following operations:

• new-pq(), which constructs a new, empty priority queue;
• pq.insert(v, k), which inserts element v with key k;
• pq.find-min(), which returns an element with the least key;
• pq.extract-min(), which removes and returns an element with the least key;
• meld(pq , ₁ pq₂), which destructively modifies priority queues pq  and ₁ pq  ₂ and produces a single 

priority queue containing all the elements and keys from pq  and ₁ pq . ₂

Some graph algorithms, such as the Chu-Liu-Edmonds algorithm for finding minimum spanning trees 
in directed graphs, also require the following operation:

• pq.add-to-all(Δk), which adds Δk to the keys of each element in the priority queue.

Using lazy binomial heaps as a starting point, design a data structure that supports all new-pq, insert, 
find-min,  meld,  and  add-to-all  in amortized time O(1)  and  extract-min in amortized time O(log  n). 
Some hints:

1. You may find it useful, as a warmup, to get all these operations to run in time O(log n) by start-
ing with an eager binomial heap and making appropriate modifications. You may end up using 
some of the techniques you develop in your overall structure.

2. Try to make all operations have worst-case runtime O(1) except for extract-min. Your imple-
mentation of  extract-min will probably do a lot of work, but if you've set it up correctly  the 
amortized cost will only be O(log n). This means, in particular, that you will only propagate the 
Δk's through the data structure in extract-min.

3. If you only propagate Δk's during an extract-min as we suggest, you'll run into some challenges 
trying to meld two lazy binomial heaps with different Δk's. To address this, we recommend that 
you change how meld is done to be even lazier than the lazy approach we discussed in class. 
You might find it useful to construct a separate data structure tracking the melds that have been 
done and then only actually combining together the heaps during an extract-min.

4. To get the proper amortized time bound for extract-min, you will probably need to define a po-
tential function both in terms of the structure of the lazy binomial heaps and in terms of the aux-
iliary data structure hinted at by the previous point.

Problem Four: Course Feedback (1 Point)

We want this course to be as good as it can be and would really appreciate your feedback on how we're 
doing. For a free point, please take a few minutes to answer the course feedback questions available at 
https://docs.google.com/forms/d/1pn_tXQYwrcGe6DfF1dozp1x0YMoR0K6P6cj5dPRcN1I/viewform. 
If you are submitting in a group, please have each group member fill this out individually.

https://docs.google.com/forms/d/1pn_tXQYwrcGe6DfF1dozp1x0YMoR0K6P6cj5dPRcN1I/viewform

